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ABSTRACT

The acoustic radiation damping for various isotropic and laminated composite

plates and semi-infinite strips subjected to a uniform, subsonic and steady flow has

been predicted. The predictions are based on the linear vibration of a flat plate. The

fluid loading is characterized as the perturbation pressure derived from the linearized

Bernoulli and continuity equations. Parameters varied in the analysis include Mach

number, mode number and plate size, aspect ratio and mass. The predictions are

compared with existing theoretical results and experimental data. The analytical

results show that the fluid loading can significantly affect realistic plate responses.

Generally, graphite/epoxy and carbon/carbon plates have higher acoustic radiation

damping values than similar aluminum plates, except near plate divergence conditions

resulting from aeroelastic instability. Universal curves are presented where the

acoustic radiation damping normalized by the mass ratio is a linear function of the

reduced frequency. A separate curve is required for each Mach number and plate

aspect ratio. In addition, acoustic radiation damping values can be greater than or

equal to the structural component of the modal critical damping ratio (assumed as

0.01) for the higher subsonic Mach numbers. New experimental data were acquired

for comparison with the analytical results.
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CHAPTER 1 INTRODUCTION

Structural vibration response to broadband random excitation, whether linear or

nonlinear, is largest in magnitude near the system natural frequencies. The maximum

magnitude is approximately inversely proportional to the system damping. Thus,

accurate maximum response predictions require equally accurate damping values.

Frequently, these values are derived from empirical methods and 'experience'.

Modifications made a posteriori then force agreement between measurements and

predictions. For aircraft, the system damping may be separated into two components:

structural - primarily resulting from the structural joint motion; and acoustic radiation

(also known as aerodynamic) - resulting from the fluid/structure interaction.

Extensive acoustic radiation (or aerodynamic) damping research exists for

isotropic panels vibrating in supersonic flow [8, 9, 20, 26] and no flow conditions

[14, 16, 19, 22, 24, 28]. Supersonic aerodynamic damping frequently dominates the

structural damping. A simplified analysis called piston theory can approximate the

high supersonic aerodynamic damping or the very high frequency damping at any

Mach number. Very thin panels or membranes and heavy fluid loading account for

most of the no flow work. Strawderman [25] studied the effects of fluid loading on

plates for turbulent subsonic flows where the free stream velocity is much less than

the speed of sound. Abrahams [1] studied the fluid/structure interaction problem in

subsonic flow to calculate the onset of flutter or divergence instability. Additional

work has been done related to cylindrical structures [15, 23]. For a recent view

of the subject see ref. [7].



This dissertation emphasizes the systematic evaluation of the subsonic acoustic

radiation damping component to determine its importance relative to the structural

component. The next chapter describes the acoustic radiation damping analyses of

thin semi-infinite strips and finite plates subjected to a uniform subsonic flow. Varying

parameters, such as Mach number or mass, produce the same trends for either the

semi-infinite strip or the finite plate. To decrease significantly the computation time,

these parameter effects have been evaluated using the semi-infinite strip. The finite

plate analysis has been utilized to show the effect of aspect ratio and composite ply

lay-up. Numerical damping results, including comparisons with previously published

data, follow the theory. Experimental modal frequencies and damping values are then

compared to the analytical damping values. Concluding remarks about the research

follow these comparisons.



CHAPTER 2 THEORY

2.1 General Derivation

Results for finite plates as well as semi-infinite strips are presented in the

dissertation. A full derivation has been given for the finite plate. Only semi-infinite

strip expressions that differ from the finite plate expressions are listed. The semi-

infinite strip equation numbers will end with an s. For example, Eq. (2.1s) is the

semi-infinite strip expression corresponding to the finite plate expression given in

Eq. (2.1).

2. I. I Finite Plate

A simple, flat, plate is placed flush in a rigid, infinite baffle, with a subsonic

uniform steady flow over the plate, see Figure 2.1 (a). Unless otherwise stated, only

the fluid effect on the upper surface is modelled in the analysis. Thus the cavity under

the plate or strip is ignored. The static pressure in the cavity is assumed to be the

same as that on the upper surface so that no static deformation of the plate exists. The

analytical model for the statically deformed plate or strip case requires a nonlinear

analysis, which is not pursued here. Realistically, air in the cavity has little effect on

the frequency ratio. However, the damping is under predicted by the amount for the

air on the lower surface corresponding approximately to a flow at M=0.

The differential equation for a thin, symmetrically laminated, composite plate

in linear vibration is [13]:

04w 2"D ) c94w_ - 04w
Dll-_x4 + ( 12 + 2D66 Ox20y 2 + D22 Oy"-_

04w 04w .02w

+ 4D160xaOy + 4D260xOy 3 + ph--_- = f. (2.1)



The force, f, is divided into two components: the fluid pressure at = = 0,/'l==(};

and the mechanical force per unit area, f.

The perturbation pressure model, derived from the linearized Bernoulli and

continuity equations for isentropic, inviscid, nonconducting, irrotational flow with no

body forces, is related to the velocity potential by [3, 8, 9]:

p= -po -_ + Uo ¢,

where the differential equation for the velocity potential field is:

1 0 2¢ _-0
The boundary condition on ¢ is:

(2.2)

(z3)

(2.4)

In addition, ¢ must be finite for z _ oo and waves induced by the plate motion

must radiate from the plate.

Assuming sinusoidal motion, i.e., w(x, y, t) = W(x, y)d "_t, t,(x, y, z, t) =

P(x,y,z)e j°_t, ¢(x,y,z,t) = O(x,y,z)e j"_t, f(x,y,t) = F(x,y)e i"_t then Eqs.

(2.1-2.4) become

_W 04W

Dl1-_74 +2(D12 + 2D66) Ox20y 2 + D_2_

04 W 04 W
+ 4D16_ + 4D2_

Ox30y OzOy 3

04W

O,v

Phw2W q- Pl_={i = F,

(2. la)

P=-po(jw+ Uo ff-_)O, (2.2a)

1(, O) ov2_ --_ _+_ =0, (2.3a)



and

,9--71_=o= j_ + Uo w. (2.4a)

Solving for the velocity potential by first taking the Fourier Transform of Eq.

(2.3a), where the Fourier Transform pair for 2-dimensions is given by [11, 8]:

--OO --OC

and

then Eq.

o1) cx3

1//o.
--00 --00

(2.3a) becomes:

(2.5b)

(_o_ _2j_ojo/,o_÷(j,)__.+_ ÷_(ja) 2 1-- k.'_O/ / -- = 0.
(2.6)

Rearranging terms:

 2o.[ ]dz 2 _ a2( 1-M2)-2_Uo°_/c2+3 '2 w2 ¢*
- _ . (2.7)

Now for q2 = o_2(1 _ M 2) _ 2wUoo/c 2 + 72 _w2/c2, the solution to Eq. (2.3a)

can have two forms depending on the sign of qe. If r}2> 0,

¢i = Aen_ + Be-'J_, (2.8a)

and if r/2< 0 then,

• _ = CeJO _ + De -.iOz, (2.8b)



where02 = -r/2. Evaluating the coefficients in Eq. (2.8) requires four conditions.

In Eq. (2.8a), _'1 must be bounded as z --. _, so that A _= 0. In Eq. (2.8b),

the waves must be outgoing. Thus, by including the time dependence, fl_t, in the

velocity potential, then C = 0.

Applying the boundary condition at z--0, to Eq. (2.8), with the Fourier Transform,

Eq. (2.5), to solve for B and D, then the velocity potential for, 712> 0 is:

¢_ -j(w + Uoo_)W* -,Tz= e , (2.9a)
r/

and for r/e< 0 is:

¢_ = -j(,,, + Uo_)W* _j_,
j_ e (2.9b)

Eq. (2.9) is substituted for the velocity potential in the Fourier Transform version

of Eq. (2.2a) at z--0, to yield:

-po(., + uo_)2w *
= (2. lOa)

and

P_I,=0 -to(,,, + Uo_)_w*• = ._ (2. lob)
3r/

The single difference in form between the above two expressions is that 7l in Eq.

(2.10a) has been replaced by jO in Eq. (2.10b). The remaining equations are written

using r/ with the understanding when r/e< 0, then 77should be replaced with J q.

Solving for the pressure on the plate using the inverse Fourier Transform, then

Eq. (2. lOa) becomes:

oo oo

PIz=0=
mOO --OO

+ U0o)2W*e-J("_+',u)

r/
dxdy. (2.11)



where,

Then Eq.

Now expressing the plate deflection by an in-vacuuo modal expansion:

N

W = _--'_ A,,W,
n=l

0'94 0 4

+ 2(D12 + 2D66)Ox20y 2 + D22_y 4

0 4 Oq4

+ 4D16-- + 4D26
Ox30y OxOy 3

(2.1) may be rewritten as:

ph,_ 2] Wn = phw_I4;,.

N

E [phw_ -phw2]A"Wn + P z=,,
n=l

=F.

Applying Galerkin's method, i.e. integrating Eq. (2.14) by

(2.12)

(2.13)

(2.14)

W ( ....... )dS

fs FWmdS

fs T W7 ,I#,,, ,,d5 '

and utilizing the orthogonality of W,-. and W., then

fs PJz=o Winds

f s Wm WindS
ph(_o_ - w2)Am + (2.16)

.o
P _=oW,,,dS = A. -_Tr2 q

n=l ¢x_ oo

[foafobWne-J(_+7")dxdy][foafobWme'(_+'tY'dxdy]d_dT}. (2.17)

the second term numerator, so that:

Interchanging the order of integrations and summation simplifies the evaluation of

a non-uniform mass distribution could be handled with little additional difficulty.

where, S is the plate area, ab. A uniform plate mass is assumed here; however.



If Wn is expressed as the summation of classical modes (such as products of beam

functions) then the integrations over the plate area have a closed-form solution.

By interchanging the integrations and summation only one numerical integration

is required.

Eq. (2.16) expressed in nondimensional parameters is:

[122 _ 122] {A} + 1_122[jC_"'(k,M,l)+ C_""(k,M,l)] {A} = F. (2.1s)

The acoustic-radiation damping is represented by #I2eCI and the effective mass

or stiffness by M2 e Ce.

Substitution of Eq. (2.17) into Eq. (2.16) and comparing to Eq. (2.18) gives

1 F/_ ( Mo,,_2jC{"n(k,M,l) + Cp"(k,M,l) = _ o0 1 + k /
O0

+
X

qa2(1 - M 2) +/27o2 - 2kMao - k"'

where ao = aa and 70 = 7b.

(2.1,,0

Solving for C1 and C2 independently, then the

damping term is:

1 [

(1 + -'_) 2G_R'n(a,, , 7o )da,,d_rn

q-ao2(1 - M 2) - 127_ + 2kMa,, + k 'e

(1 + -_)2G'_n(ao,70)dot,,dTo ]
- / fA2 qa2(1_ M 2) 7 '2V'--_o- 2kMo,'-----_---I( 2,

and the effective mass or stiffness is:

1 [//A (l+M'k_)2

- Gr_n(_o, 7o )dc_odTo
C_""( k, M, l)

' q-ao_(1 - M 2) -/278 + 2kMoo + k 'z

--iZA, (l+_-_)2G_n(a°'7°)da"d'" ]q (l : +,..,o_

(2.20)

(2.21)



where:

I/J ][/J JGr_ n + jGrfl n = Wne-J(_oxo+_o_O) dxody o W,_eJ("o_o+ _oyo)d.rc_dy . ,

0 0

A1 is the area inside the ellipse a02(1 - M 2) + 12702 - 2kMcqj - k e = 0, and Ae

is the area outside the ellipse.

2.1.2 Semi-infinite Strip

The semi-infinite strip is shown in Figure 2.1(b) for flow on one side. The

differential equation for a semi-infinite strip vibrating in an infinite baffle is:

D O4W _ O_w _

q- ph--o--_- = f. (2. Is)

Utilizing the linearized Bernoulli and continuity expressions, Eqs. (2.2a, 2.3a); the

boundary conditions given by Eq. (2.4a); and assuming sinusoidal motion, then:

Pl_=0 = -p----O-°--/ (w + Uoc_)2W* e-J_*do, (2.1 Is)
2_- _ 17

where: r/2 = ,2 (1 - M02) - _Co - _"gg-o"

Again, expressing the strip deflection by an in-vacuuo modal expansion and

utilizing the orthogonality of Wm and W,,, then the result is given by Eq. (2.16),

where S is the strip length, a. Interchanging the order of integration and summation,

then the second term numerator is given by:

l.,::o-..s-- A.{ v°'l'
(2.17s)

The resulting nondimensional form of Eq. (2.16) is:

[122 - f12] {A} + I_n2[jC_""(k,M) + C?"(k,M)]{A} = ['. (2.1 8s)



Substitutionof Eq. (2.17s)into Eq. (2.16)andcomparingto (2.18s)gives:

jc?" + c_" = _1 f°° { (l +-_-_)2(G_n(ao) + jG_]'"(ao)) }dc_o.__ V/4(1-M_o)- 2kMooo- k_
(2.19s)

Solving for C1 and C2 independently, then:

1/C?"(k, Uo) =_
Al

J_ Of 2 71rt n

(1 + m_k-_ ) G R (ao)dao

_/-40 - Uo_)- 2kMo.o+k_-

1 f (1 + -M_)2G?n(ao)doq,

27r A2 V/a2o(1- M2) + 2kM°a°- k2'

(2.20s)

where:

1

cr-(k,-o)=_ f / _,-(±-+--M-_)---_27°(°")'_-----_'-'.-_,_kMo_,,
A, V-_ 1- _'_)- +k 2

_ 2Gmn 0_0 dao
1 (1+ k ) R( )

27r [/o ,to\

A, W_t_- _"_)+2kM,,o,,-k 2

G_" + jGT n =

(2.21s)

A, is the region where _02(1 - M2o) - 2kMoc_,,- k 2 < 0, and A2 is where

a02(1 - M2o) - 2kMoao - k 2 > 0. For symmetric fluid loading on both sides, see

Figure 2.1(c), the integrals in Eqs. (2.20s) and (2.21s) would be doubled.

10



2.2 Mode Function Representation

2.2.1 Finite Plate

The normalized mode shapes (xo = xla and y0 = y/b) for clamped isotropic

plates are represented as follows:

R S

wm= Z
r=ls=l

p Q

p=lq=l

(2.22)

where the normalized clamped beam functions, _b, may be approximated by (see

Appendix A):

_p_(z) = sinfl,.z - cos/3,.z - (-1)_¢ a_(_-l) + e-l_'" ' 9'(2..,_)

and B m and B_,"q are eigenvectors of the beam modes, rs and pq, associated with the

mth and n th plate modes, respectively. The approximation, Eq. (2.23), eliminates

the calculation of hyperbolic functions which can lead to inaccuracies, particularly

for higher modes.

2.2.2 Semi-infinite Strip

The normalized mode shapes for the semi-infinite strip are given by:

Wm= '/',.(X0), W. = '/'.(xo), (2.22s)

The clamped mode shapes are given by Eq. (2.23), while the pinned mode shapes

are _,,(z) = _in(,-_z).

11



2.3 Frequency Response Solution Techniques

2.3.1 Half Power Method

The 'haft-power bandwidth' method is the approach frequently chosen in

estimating small critical damping ratios. The amplitude over force ratio is plotted

versus frequency, where the mechanical force is non zero. f), and f)b are the

frequencies at which this ratio is _2 of the maximum value found at the resonance

frequency, Y2R. The relationship between these frequencies and the critical damping

ratio is [21]

_ 2f_ (2.24)

assuming that ,f2_ << a2_'. a'2_ and a2_" are the real and imaginary parts, respectively,

of the resonant frequency.

2.3.2 Complex Frequency

The above method is an approximation to solving directly for the complex

frequency. In general the modal frequencies are calculated by setting the determinant

of Eq. (2.18) or (2.18s) to zero for _' = 0. The determinant in this case is complex

so that the real and imaginary parts must both be zero. Let, f_m=f_mR+i_m I be one

of the complex modal frequencies at which the determinant is zero. Then the critical

damping ratio is defined as:

f_. (2.25)

Although this is the most direct method, it is also computationally time-consuming.

For each test panel the complex determinant, composed of complex C1 and C2

integrals, must be evaluated many times.
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2.4 Perturbation Approximation for Small Mass Ratio

Initially, the damping values may be calculated relatively conveniently using a

perturbation technique. Not only will these results give preliminary damping values,

but they also provide starting values for solution by frequency response methods.

The frequency will be perturbed about # = 0 and only include up to first

The mth modal frequency mayorder terms. For air loading/z is usually small.

be expressed as:

(2.26)

Substitute Eq. (2.26) into Eq. (2.18) or (2.18s) and set the determinant of the equation

to zero, for 1_' - 0. This is done for each order of tL. The zero order terms are:

m

f_" = tim, (2.27)

or the zeroth order terms are simply the nondimensional undamped in-vacuuo modal

frequencies, f_m- Solving for the first order terms then gives:

f'lr_ = [jc{nm(km,M,l) + c_m(km,M,l)]. (2.28)

Substituting Eqs.

approximation yields the critical damping ratio:

• C,,,mlk
_m = nft']' = tt 1 t m,M,l) (2.29)

2

This result is valid for the semi-infinite strip and the finite plate. In addition, the

mulfimode analysis for the first order perturbation is only dependent on a single

in-vacuuo mode.

(2.27) and (2.28) into (2.26) and maintaining the first order
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2.5 Solutions for Special Cases

First, three limiting cases of the flow analysis are considered. They provide

physical insight and check the more complicated numerical calculations.

2.5.1 Incompressible Flow

For the incompressible flow case, where co _ _, then Eq. (2.3a) reduces to:

V2q_ = 0, (2.30)

the well-known Laplace's equation. The expressions relating the velocity potential to

the perturbation pressure and plate displacement, Eqs. (2.2a) and (2.4a), respectively,

remain unchanged. Using Fourier Transforms the pressure on the plate has the same

general form as Eq. (2.17). However, r/ = _/a 2 + 3'2 is real since the square root

argument is non-negative. In addition, Eq. (2.17) will contain only real terms. Thus

k = 0 (since co _ _) and C1 = 0.

2.5.2 No Flow

For small reduced frequencies (k << 1) and M = 0, it can be shown that for

an isotropic, clamped, finite plate:

k[ 22c[nm(k,M = 0,1) = _r/ PaP2

2 214 2 212 2 2/2
+ P3P4tC + P2P3tC "4- PlP4tC

15l 2 3 12

-cos_ + 2 - sin_ - (-1y
pl - _ ,

-cos_ + 2 - sin_ - (-1) _

P2 -- /_s '

1 + (-1)_(-/3, + 1)

p3- ,
1 + (-1)s(-Bs + 1)

where

P4--

(2.31)
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This assumes that the plate mode is a simple product of two beam modes, i.e.,

Wm(x,y) = !/,r(x)_bs(y). Eq. (2.31) is dependent on k and goes to zero as k _ 0

as predicted for the incompressible flow case.

2.5.3 Piston Theory

The third limiting case, commonly referred to as piston theory, is applicable in

subsonic flows for k >> 1 and for higher supersonic flows at all reduced frequencies.

The pressure on the plate is [9]:

P z=0 = poco (joJW + Uo Ox 1" (2.32)

Or physically, the pressure is related to that in a tube where the piston velocity is

given in parenthesis and poco is the acoustic impedance. Substitution of Eq. (2.32)

into Eq. (2.14) yields:

N

Z A,[W,(phw_ - phw 2 + jwpoco)+ p(,c(,,. (l_]
n=l

= o. (2.33)

for no mechanical forcing function. Integrating Eq. (2.33) using Eq. (2.15) then the

frequency equation in nondimensional terms becomes:

•#1-12, Angm,,M
Z,,, [(a2_ - f12)+ 3-'k"'J + ,ua 2 Z k 2

n

- O. (2.34)

Comparison of Eqs. (2.34) and (2.18) gives:

{1 }el""= for m=n

0 for rn#n

(m35)

c_nn = gmn M
k2 (2.36)
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where:
1 1

Wm dxo dyo .
0 0

Eq. (2.35) shows no dependence on aspect ratio, l, or mode number pair, pq, except

through their indirect appearance in k. Eqs. (2.35) and (2.36) are valid for any edge

condition as long as the mode shapes are orthogonal. Finally, this result also holds

for either the semi-infinite strip or the finite plate.

For an isotropic, clamped, finite plate:

4_--_fl---_][1 -(-1)P+_]5(q - s)
gmn = [/34_ _4 J if 7- # ._ (2.37)

Thus where the plate modes are modelled by pairs of beam functions, i.e, m=r,s and

n=p,q, then C_ '_ is only nonzero when q = s, (p + r) is odd and 7'# ,_..
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CHAPTER 3 THEORETICAL RESULTS

The following figures contain results for various aluminum and composite plates.

Sample modal frequencies and damping values along with C1 and (;2 integral

evaluations are presented below. An IMSL [12] integration subroutine, based on

a Gauss-Konrod quadrature algorithm, evaluated the integrals in Eqs. (2.18) and

(2.18s). Table 3.1 contains the material properties used in the computations. Table

3.2 contains the beam function pairs that approximate the plate mode given in the first

column. For example, plate mode 3 resembles a plate with the first beam function in

the x-direction (flow) and the third beam function in the y-direction (span). Although

the plate mode resembles a specific pair of beam functions, the true plate mode

deflection is a summation of these beam function pairs, see Eq. (2.22). For the

semi-infinite strip, the mode shapes are the beam functions, see Eq. (2.22s).

3.1 Numerical Integral Evaluations

Specific numerical integral evaluations for C1 mn and C2 mn will only be presented

for the finite plate. The semi-infinite strip analysis showed similar trends. In addition,

the semi-infinite strip analysis agrees with the appropriate limiting case results.

The effective damping term (C1 ram) vs. k values for the first six in-vacuuo plate

modes (m) of a square plate are presented in Figure 3.1. The in-vacuuo modes do not

allow for beam modal interaction. Thus for m=3, only the beam function pair 1,3 is

included in the analysis. These integral values represent an isotropic plate subjected

to flow at M = 0.8. The plate material properties and speed of sound appear in
i

k. Only diagonal terms for C1 m" and C2 m" (i.e. re=n) are presented since they are
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dominant.Notethat for a particularplate,mode10 (k = 3.0) could havea higher C1

value and thus greater perturbation damping than mode 1 (k = 0.9), recall Eq. (2.25).

These numerical integration results are also compared with the limiting cases.

First, as k _ 0, then clmm_0 as expected from the incompressible flow analysis,

section 2.5.1. For the no flow special case, discussed in section 2.5.2. let k = 0.4

and l = 1.0. Then, C_I(M = 0) = 0.03155 using Eq. (2.31) of that section while

the numerical integration of the general case gives C_ I(M = 0) = 0.03067 using Eq.

(2.20). Thus the two results agree to within 3%. In addition, as k becomes large the

curves converge to those results predicted by piston theory, '-/1r-'m"-- _., Eq. (2.35).

/.2 K'mnFor the effective mass or stiffness terms, selected off-diagonal ...... 2 vs. k

values are plotted in Figure 3.2 for comparison with piston theory. These values

represent an isotropic square plate subject to M = 0.8 flow. As k becomes large

k2C_ nn values approach the asymptotes predicted by piston theory, Eq. (2.36). Piston

theory predicts k2C_ 6 = -2.67, while the numerical integration gives -2.76, Eq.

(2.21). The magnitude of these asymptotes is dependent on M, unlike C1.

Figure 3.3 shows C111 vs. k for a square plate at various Mach numbers. (7{'_'"

at a specific frequency generally increases with increasing Mach number, as would

be expected. In addition, the k value at which the maximum occurs decreases with

increasing Mach number. The curves converge as k becomes large as predicted

by piston theory.

Figure 3.4 shows C u vs. k at M = 0.8 at various a/b ratios. As this ratio

decreases then the maximum possible C1 value increases. Unlike the trend with

Mach number, as this ratio decreases, the k value at which the maximum occurs is
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approximately constant. Note that as k becomes large the curves converge as would

again be expected from piston theory. In addition, as k ---, 0 then C{ ''m _ 0 as

predicted by the incompressible flow case, section 2.5.1.

3.2 Damping Calculations

The panel damping values were calculated at various modal frequencies using

the half-power technique as described in section 2.3.1. For comparison purposes,

the structural critical damping ratio may be assumed to be approximately 0.01 for

all modes and all Mach numbers for lightweight structures such as aircraft fuselage

sidewalls. Unless otherwise noted the displacement frequency response curves were

calculated for a plate driven by a uniform pressure field over the entire plate or strip,

see Eqs. (2.18) and (2.18s). The center of the plate was the response location. In

addition, the single (one) mode calculations are based on a simple single product of

beam functions. The modal frequencies were determined by locating the maximum

of the frequency response curve.

Sample response curves are shown in Figure 3.5. The frequency response was

calculated by two methods. For the 'total' method, (71 and C2 were calculated at

each 12 value; while C1 and C2 were calculated only near the half-power points and

allowed to vary linearly between these two frequencies for the '2-point' method.

This 2-point approximation greatly reduces the necessary computation. For this

example, an aluminum panel was clamped on four edges and subjected to flow at

M=0.8. Figure 3.5a corresponds to a single mode analysis of mode 1; while Figure

3.5b corresponds to mode 10. For mode 1 the two methods give nearly identical

results, where the damping ratio is 0.010. However, for mode 10 the two methods
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give different response curves. The resulting '2-point' damping ratio, 0.1IXl, is nearly

1/3 less than that for the 'total' calculation of 0.140. The reason for this discrepancy

is evident from Figures 3.5c and d, for C1 and Ce, respectively, taken from the

'total' computation. Neither C1 nor C2 is linearly related to f_ in the frequency

range of interest. The results in Figures 3.5b-d represent an extreme, but important

case: for large damping values the 2-point approximation may not be sufficiently

accurate. C1 and Ce were also found to vary rapidly with respect to f_ for very

small f_ (plates near divergence).

3.2.1 Semi-infinite Strip

Results for the semi-infinite strip are presented in Figures 3.6-3.11. In these

calculations the total method was used since damping values as large as 0.20 were

calculated. The finite plate analysis shows similar trends, but requires much longer

computational times.

Figure 3.6 shows the comparison between Eq. (3.18s) and the data presented by

Mixson [19] for a pinned, aluminum strip. The agreement is excellent. In this case

the results are for a--0.762m, h--0.003175m with symmetric no flow conditions. The

mass ratio is varied by changing the fluid mass, po. The fluid loading has a greater

effect on the first mode frequency than on higher mode frequencies. In addition,

mode 1 has damping values nearly an order of magnitude greater than the remaining

modes. Although the frequency ratios and the mode 1 damping values are well

approximated by a single mode, the damping for the higher order modes required

more terms. For example, the first three odd modes were required to calculate mode

3. Without flow the even and odd modes do not couple.
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Figures 3.7-3.11 present frequency and damping ratios for a number of semi-

infinite aluminum strips as a function of Mach number. The fluid for these cases is air

at standard atmospheric conditions. Note that for some Mach number the frequency

may be reduced to zero by a loss of stiffness due to the aerodynamic flow. In such

a case, divergence or aeroelastic buckling occurs, see ref. [9]. The baseline case

is the first mode where a=0.2m and h---O.001m with fluid flow on one side, i.e., the

cavity side effect is ignored.

From Figure 3.7, the plate edge conditions have very little effect on the acoustic

radiation damping up to divergence. However, the divergence Mach number for the

pinned strip is nearly half that of the clamped strip. In addition, fluid loading on both

sides decreases the divergence Mach number about 25 percent while approximately

doubling the damping ratio. The figure also shows the comparison between the

perturbation approximation (dotted lines) and the half-power technique (solid lines).

The perturbation approximation is reasonably accurate until the flow causes the modes

to strongly couple or the flow significantly decreases the plate stiffness.

Figure 3.8 shows the effect of chord on frequency ratio and damping ratio as

a function of Mach number. Increasing the chord significantly increases the fluid

loading effect on both frequency ratio and damping ratio. Doubling the chord (from

a=0.2m to a=0.4m) decreases the divergence Mach number more than factor of two,

while the damping ratio is approximately doubled, up to the divergence Mach number.

The effect of plate mass on frequency ratio and damping ratio is shown in

Figure 3.9. Changing the plate mass has little effect on the frequency ratio, since
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the divergenceis stiffnessrelated. However,doubling the strip massdecreasesthe

dampingratio by nearly one-half.

Figure3.10 showsthe effectof platethicknesson frequencyratio anddamping

ratio as a function of Machnumber. The plate thicknesshasa considerableeffect

on both the frequencyratio and the dampingratio. Halving the plate thickness

resultsin more thana factor of two decreasein divergenceMach number.However,

changingtheplatethicknesshasanapproximatelyinverselyproportionalrelationship

on the damping.

Finally, from Figure3.11, thefluid loadinghasa muchgreatereffect on the first

modethanon the highermodes.In fact, the acousticradiationdampingvaluesfor

the higher modesarenearly an order of magnitudeless than the first mode. The

secondmodewas excitedby applyinga point force at x--0.05m with the response

calculated at x--0.15m.

3.2.2 Finite Plate

The following figures contain results for various aluminum and laminated

composite plates. For these cases the plate is clamped in an infinite baffle with flow

on one side. First, calculations based on Eq. (2.18) are compared with existing

As for the semi-finite strip, the fluid is air at standardcalculations and data.

atmospheric conditions.

Wilby [29] measured the total damping for a number of steel panels up to Math

0.5. The acoustic radiation damping component was measured by subtracting the

total damping at Mach 0 from the total damping at Mach 0.5. The structural damping

component was assumed constant with Mach number. Figure 3.12 contains the results
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for a numberof modesof thesepanels. The dampingcalculatedusing Eq. (2.18)

at Mach 0 wassubtractedfrom that at Mach 0.5. Although, someof the points

show a factor of 3 differencebetweenthe presentresultsand Wilby, most of the

pointsarewithin a factor of 2. Themeasuredmeandampingvalueswerereportedto

havea +95% variation. In addition, measurement/instrumentation errors could cause

overprediction of the experimental values [29].

Chyu [5] used an analysis similar to the perturbation approximation to predict the

acoustic radiation damping. A comparison between the perturbation approximation

results, Eq. (2.29), and Chyu's are given in Figure 3.13 for a steel plate, 0.0889 x

0.0889 x 0.000381m, subjected to a Mach 0.3 flow. The agreement between these

two analyses is good.

The effect of a/b ratio on acoustic radiation damping is given in Figure 3.14.

For these calculations a was kept constant at 0.2m and b was allowed to vary. The

thickness is h=0.001m. Thus as b becomes large, then a/b---, 0 and the result is a

semi-infinite strip. The semi-infinite strip results have been added next to the left

axis of the figure. Increasing the Mach number raises the damping vs. a/b ratio

curve, except at the higher ratio values. At large a/b, the convergence of the curves

is predicted by piston theory. The square near the right axis corresponds to a no

flow semi-infinite strip calculation where the chord is 0.025m. This result has been

compared to that for a finite plate where a=0.2m and b--0.025m (or tL/b=8). Finally,

note that the acoustic radiation damping at M=0.6 is greater than or equal to the

assumed structural value, except for the higher a/b ratios.
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The frequency ratio and acoustic radiation damping for a number of laminated

composite plates are presented in Figures 3.15-3.20. Results for an aluminum plate

with the same dimensions has been included for comparison purposes. The plate

dimensions are a=0.2m, b----0.3m and h=0.001m. Previous results showed that the first

mode had acoustic radiation damping values approximately an order of magnitude

greater than the higher modes. For this reason only the first mode results will be

presented. The first mode damping values for isotropic plates were also found to

be calculated accurately by a single product of beam functions. Since the laminated

composite plates are orthotropic or quasi-isotropic, then the mode shapes are nearly

the same as the isotropic case. Thus the results presented here are for a single product

of beam functions for the first mode. The results presented in Figures 3.15-3.18

are to emphasize the differences between laminated composite and isotropic plates

(such as aluminum).

In Figure 3.15, the graphite/epoxy plates have the same outside fiber direction,

which is aligned with the flow, 0 °. The [0,+45,90]s and aluminum plates have nearly

the same modal frequency. However, the difference in damping results from the

different mass ratios, /t. This is apparent in the perturbation approximation, Eq.

(2.29), where the damping in proportional to the mass ratio. Note that all of the

damping ratios are significantly larger for the graphite/epoxy plates than the aluminum

plate. In addition, all of the graphite/epoxy plates have acoustic radiation damping

ratios of approximately the same magnitude.

In Figure 3.16, the frequency and damping ratios are for the baseline aluminum

and graphite/epoxy plates where the outside fiber direction is perpendicular to the
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flow, 90°. At the lower Machnumber,well belowdivergence,thedampingratios for

thegraphite/epoxyplatesaregreaterthanthatfor thealuminum.Thesegraphite/epoxy

platesdivergeat a much lower Mach numberthan the aluminumplate. This is due

to the decreasedstiffnessof the graphite/epoxyplatesin the flow direction.

In Figures3.17and 3.18,the compositeplatesarecarbon/carbon.The damping

and frequencyratio trendsfor the carbon/carbonplatesaresimilar to thosefor the

graphite/epoxyplates.The laminateswherethe outsidefiber direction is alignedwith

theflow, Figure3.17,showlesseffecton frequencyratio than thealuminumplate. In

addition,thedampingfor thecarbon/carbonplatesis muchgreaterthananaluminum

plate with the dampingfor the two carbon/carbonplatesapproximatelyequal.

Figure3.18,wheretheoutsidefiberdirection is perpendicularto the flow, shows

a greatereffect on frequencyratio than for the aluminumplate. In addition, the

carbon/carbonplatestill hasa largerdampingratio ascomparedto the aluminum

Comparisonsof Figures3.15 through3.18 show the sametrendsareevident

for the graphite/epoxyand carbon/carbonplates. In particular, the outside fiber

directionstronglyinfluencesthelaminatedcompositeacousticradiationdampingand

modal frequencies.The materialproperty,graphite/epoxyor carbon/carbon,are less

important whenthe outsidefiber direction is alignedwith the flow. This results

from the fiber Young'smodulus(EH) for thetwo laminatypeshavingapproximately

equalmagnitude.The materialproperties,in particularthe matrix property is more

importantwhenthe outsidefiberdirection is perpendicularto the flow. Note that the

matrix Young'smodulus(E22)for thetwo laminatypesdiffer by almosta factorof 2.

In addition, thecompositeplateswherethe outsidefiber direction is perpendicularto

26



the flow divergeat a lower Machnumber. Thegrossdifferencein acousticradiation

dampingandmodal frequenciesdependingon the outsidefiberdirection implies that

laminatedcompositeplatescanbe tailoredto obtainhigh acousticradiationdamping

valuesand to delay or preventdivergence.

In general,the acousticradiation dampingfor laminatedcompositeplates is

significantly greaterthanfor the aluminumplates.Thesecomparisonswere basedon

similar thicknessplates.Comparisonsbasedon equivalentstiffnesseswould require

thickeraluminumplatesresultingin lower acousticradiationdampingvalues. Thus

the netdifferencebetweenthealuminumandcompositeplateswould be evenlarger.

The datain Figures3.15-3.18havebeencompressedto demonstratethe ability

to developcompactdesigncurvesto predict acousticradiation (or aerodynamic)

damping.Thedampingratio normalizedby themassratio is plottedagainsta reduced

frequencyfactor, kl = l-t,c_'-(k .... M,0 , in Figure 3.19. The reduced

frequency was selected for the abscissa based on the perturbation approximation

relationship. It was shown that c_nm(k, M, l) varies linearly with k for many plates

of interest. Note that C_'"*(k, M, l) must be evaluated at the resonant (not the

in-vacuuo) reduced frequency for the mode of interest (in this case, the first mode).

For constant a/b ratio and constant Mach number, the data form a straight line. A

least mean square (LMS) algorithm was used to fit a straight line through the data.

These results include typical aircraft sidewall panels and plates near divergence. Most

of the data are for plates of the same size (a=0.2m, b=0.3m., h=O.OOlm). Additional

data for aluminum plates with a/b=0.6667 and M=0.6, but varying plate thickness

and area have been included for comparison.
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To eliminate the need to evaluate the C_'_(k, M, l) integral, the reduced frequency

factor was approximated as k2 = _, see Figure 3.20. For typical aircraft panels

subjected to flows less than or equal Mach 0.6, this approximation was reasonably

accurate. However, at M=0.8, where the flow can significantly change the plate

stiffness of the plates near divergence, the approximation is no longer valid. An LMS

algorithm was fit through the points for plates not near divergence.

The results presented in Figures 3.19 and 3.20 indicate that design curves can be

constructed to predict the acoustic radiation (or aerodynamic) damping of lightweight

structures. For aerospace applications, where aircraft sidewall panels are not designed

to operate near divergence, the design curves need not include flow effects on the

plate resonant frequency. Thus the computations are greatly simplified due to the

elimination of the two-dimensional integral evaluation of C2.
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Table 3.1. Material Properties

Eli x 109 E22 xlO 9 u12 GxlO 9 hlamina pp

Material (N/m 2) (N/m 2) (N/m 2) (m) (kg/m 3)

Aluminum 72. 72. 0.33 27.4 -- 2700.

Steel 200. 200. 0.28 83. -- 7700.

Graphite/Epoxy 163. 10.2 0.3 6.48 .000125 1600.

Carbon/Carbon 138. 6.89 0.08 1.03 .00025 1860.

PZT 82. 82. -- -- .000254 7600.
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Table3.2. PlateMode(m) to BeamFunctionPair (r,s) Correspondence

m /" s

1 1 1

2 1 2

3 1 3

4 1 4

5 1 5

6 2 1

7 2 2

8 2 3

9 2 4

10 3 1

11 3 2

12 3 3

30



¢..)

2.0

1.5

B

Mode

I /

............. 2 ,',I_

6 ,' _, I
........ 7 '1 'l

k

ii

100.0

Figure 3.1. Effect of reduced frequency and mode number on C1.

31



¢N

(_)
N

10

5

0

-5

Mode

1,6

2,7

6,10

6,1

7,2

7,1 1

_ °.-- 7"- _ ".

/
_" °re

_ _°°°o °° ° o., °..

• /

'_ \ ..7
_. . _ ".2"_"/

--10 ..... I ........ I ..... I

0.1 1.0 10.0 100

k

.0

Figure 3.2. Effect of reduced frequency and mode number on k2C2.

32



O

0.0

0

Mech number

M=O.O

2 4 6

k
8

Figure 3.3. Effect of Mach number on first mode C1.

33



(.)

a/b ratio

1=0.5

_--_ I-1.0

I= 1.5

0.0

0 1 2 3 4 5
k

Figure 3.4. Effect of aspect ratio number on first mode C1.

34



1.0 _ 1.00

0.8 j_io__ pit, C31:] 0.90

0.80

_: 0.6 _: 0.70

0.4 _ _ 0.60
0.50

0.2 , , 0.40 ........................ ......
14 16 18 90 100 110 120 130 140

Q

(o) (b)

2.4

2.2

2.0

1.8

1.6

1.4

90

otO" -2

................ . ........ • m4 ....................... .,..m

100 110 120 130 140 90 100 110 120 130 140
Q

(c) (d)

Figure 3.5. Comparison of total and 2-point prediction methods at M=0.8 for (a)

mode 1 and (b) mode 10 with Mode l0 variation of (c) C_ and (d) C2.

35



1
o
II .6

.3

d

o_ .0e

0
u-

u_

.01

_- Mode 3

MIx

0 _ Lyle _

(a)

I I I I I
.I0 1.0 10 100 1000

Massratlo,p = p0Nph

(a)

1.00

.60
0

.30

e-

E .10 -
¢=

"1: .06 -
t-
O

.03 -
_a
"0
G
Im

o .01

m
.._ .006
O
u
< .003 -

.001

.01

Mlxson

O A Lyle

Mode I J_-_-- A

Mode 3

_- Structural damping

I I I I
.10 1.0 10 100

Mass ratio, p = poa/ph

(b)

Figure 3.6 Effect of mass ratio and mode number

on (a) frequency ratio and (b) damping ratio

I

lOOO

36



0.2

0.0

0.0

B

_ \ \ \
_,--_1-.,._. \ ",.. _,

'A---_ l-side pinmld _ _ _9

• • • I • . • I .]mj[ i i I , , • #

0.2 0.4 0.6 0.8

M

(o)

0.25

0.20

0.15

0.10

0.05

0.00

0.0

Edge
Flaw condlllons

l-side clamped
2-slde clamped []
1-side pinned

13"'"0 1-slde clomped(perturbation) I_

¢" ""¢' 2-slde clamped(perturbation)

_ _truct.ural

_ aamplng
• l , , , I , . . i . , l I . . • I

0.2 0.4 0.6 0.8 1.0

M

(b)

Figure 3.7. Eff_t of Mach number, edge conditions

and flow on (a) frequency ratioand (b) damping ratio.

37



0

0.2

0.0

0.0

,[ 0 0

.-. o=o, \
o=o, \ \

"a--'_ a=0.3 X _D

0--0.4

0.2 0.4 0.6 0.8

M

(o)

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Chord(m)
0=0.1

0=0.2

0=0.3
X---x 0=0.4

/

0.0 0.2 0.4 0.6 0.8

M

(b)

Figure 3.8. Effect of Mach number and chord

on (a) f_:luency ratio and (b) damping ratio.

!

1.0

38



O

0.2

0.0

0.0

• _ p= 1350 \

'. _ p=2700 \

p=5400

I , , , I I . . i I

0.2 0.4 0.6 0.8

M

(o)

0.20

0.15

0.10

0.05 !
0.00

0.0

B---El p=2700

p=5400 _

v

• I. lllll

0.2 0.4 0.6

M

(b)

Strucfural

J damping

, I . |

0.8 I .0

Figure 3.9. Effect of Mach number and plate mass

on (a) frequency ratio and (b) damping ratio.

39



o

c

0.2

0.0

0.0

h=0.000S $
B---E3 h=0.001 "_

h=0.002

I , , I • • • I = • I I I I I I

0.2 0.4 0.6 0.8

M

(o)

0.14

0.12

0.10

O.

O.

O.

O.

O.

08

06

04

02

O0

0.0

B

Thickness(m) _]

h=O.O005 /

hh:_:_12 /

- damping

• • I I . , . I i i = I • • , I

0.2 0.4 0.6 0.8 I .0

M

(b)

Figure 3.10. Effect of Mach number and plate

thickness on (a) frequency ratio and (b) damping ratio.

40



1.0

0.8

0.6

c'_" 0.4

0.2

0.0

0.0

Mode 2 \

0'-'--¢) Mode .3

I * i * I , , , ! i

0.2 0.4 0.6 0.8

M

(o)

0.15

0.10

0.05

0.00 ,

0.0

[_E] Mode 1 /_

/ ' /Structural

" , ,_ i . . . , . . . i

0.2 0.4 0.6 0.8 1.0

M

(b)

Figure 3.11. Effect of Mach number and mode

number on (a) frequency ratio and (b) damping ratio.

41



0.006 []

.,,_ 0.004
I

' O.O02

,k.,, o

0.000 r-'-"/-_. , .Oo, , . , , i . , ,

0.000 0.002 0.004 0.006

_'Lyle(M =0.5)-- (_LylII(M =0.0)

Figure 3.12. Comparison of Wilby and Lyle acoustic radiation damping ratios.

42



0.0015

0.0010

0.0005

0.0000

0

13

•0000 0.0005 0.0010 0.001 5

Figure 3.13. Comparison of Chyu and Lyle acoustic radiation damping ratios.

43



ee

0

0

IO0

.010
[]

.001
0.01

.... " " -.., Structural

........... ",, %. / damping

"'°*-.Oo.. ,o %. ,% %. /
_°'.Oo.o = % %. %.

°°.o

°'o. _,

°•*°° .o°.° %._. Mode 1,
......... Mode 1, M=0.4 _ ............ "".x\

.... ,,  =o16
D Semi infinite strip X

• " " = " =| • " .... i| • • • = = .I

0.10 1.00 10.00

a/b

Figure 3.14. Effect of aspect ratio on acoustic radiation damping.

44



0

0.2

0.0

0.0

[(o)8]

[(o,9o)2]s

[o,±,s,9O]s
...... Aluminum

0.2 0.4 0.6 0.8 1.0

M

(o)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0
i i

.0 1.0

m---m[(o)8]

[(o,9o)2]S ///
[o,.s,9o]S //

...... Aluminum /... ,,,.,.-'"'"'""

.."" _Structural

,,, _..,__..._ ,....'/aar_ping

i _ I i i i I i _ i I , , , I

0.2 0.4 0.6 0.8

M

(b)

Figure 3.15. Effect of Mach number on (a) frequency ratio and (b) damping

ratio for graphite/epoxy plates with outside fiber aligned with flow, 0 °.

45



O

0.2

0.0

0.0

i . . ............. "°'°'"".....°,.....,., .°... °,°%°.

I i , i . I a , I

0.2 0.4 0.6 0.8

M

(o)

i I

1.0

0.12

0.10

0.08 -

0.06

0.04

0.02

0.00

0.0

H [(9o)a]

[9o,_4s,O]s
...... Aluminum

. °°'°°

_ Structural ..."

............ '
0.2 0.6 0.80.4

M

(b)

Figure 3.16. Effect of Mach number on (a) frequency ratio and (b) damping ratio

for graphite/epoxy plates with outside fiber perpendicular to flow, 90 ° .

46



0.4.

0.2

0.0

0.0

°°%

[(0)4]

[o,9o]s
...... Aluminum

• • I . . , I • , • I , • • 1 . . . I

0.2 0.4 0.6 0.8 I .0

M

(o)

0.12

0.10

0.08

0.06

0.04

0.02

0.00

0.0

p

[(0)4]

[o,9o]s
...... Aluminum

°°°°.,°'""

ctural

.,.__'=/..'_""" d a m pin g

m .o* ........

-,l,,,I,..llllJ_,,i

0.2 0.4 0.6 0.8 1.0

M

(b)

Figure 3.17. Effect of Mach number on (a) frequency ratio and (b) damping

ratio for carbon/carbon plates with outside fiber aligned with flow, 0 °.

47



1.0

0.8

0.6

0.4

0.2

0.0"

0.0

_:__'""°'°"°'*"'°

...... Aluminum

• I , , • I - l , , I

0.2 0.4 0.6 0.8

M

(o)

i !

1.0

0.12

0.10

0.08

_-_ 0.06

0.04

0.02

0.00

0.0

[(90)4.] /

...... Aluminum /..........,.....

_..'"" _. Structural

_....._. _./Oomp,ng
...'-! ........

'":''"-'"':'" i "'_''":"'. , . , I . , , ,

0.2 0.4 0.6 0.8
M

(b)

I

1.0

Figure 3.18. Effect of Mach number on (a) frequency ratio and (b) damping ratio

for carbon/carbon plates with outside fiber perpendicular to flow, 90 ° .

48



0.8

0.6

_04
o

0.2
°.

.°

°, o"

o°°

,,'°

°°

o"

°°

°o

°

o"

A A M=0.4

O O I_=0.6

[] [] M=0.8

...°°''

°*°°° • _ .- ° ° " ° °'" " " ° "

,_o..
.._ ._.......

O. 0 "'"-";"_'",'"':_: ......,A..... .,_.A.-,,........_"" ........

0.0 0.2 0.4 0.6 0.8 1.0

k
1

o-'°°0

Figure 3.19. Damping ratio normalized by mass ratio as

_ / n_,:,-m-;......
a function of kl - V1__,c2 (k.... M,l) _/#_c o for a/b---().66667.

49



0.8

0 .6

.4_0
v---q

A.,.,

0.2

Z_ Z_ M=O•4

0 0 M=O•6

0 0 M=0.8

°.'"

°." C]"

C_•o'"

... •o.'•'''_

9_
.o

oo

°o"

o
oO

.o ..°°'''
• ..-.

•..'"'" [] 0..0.9........._ .......

0 0 .......':""_"::';"_'"""""............_ ......." .........

0.00 0.02 0.04

k 2

I

06

Figure 3.20• Damping ratio normalized by mass ratio

as a function of k2 = ,/_P_'rr__ for a/b--0.66667.
v /.,,,-%

50



CHAPTER 4 EXPERIMENT

Due to the small data set of existing experimental damping values, an exploratory

experiment was designed to acquire data for comparison with the analysis. Before

designing the test apparatus, a number of facilities at NASA Langley were evaluated

for not only the flow capabilities but also scheduling requirements. It was appreciated

that such experiments are difficult to perform and that existing data for subsonic

flow show substantial scatter [29].

4.1 Description of Test Setup

The test model was designed for installation in the Quiet Flow Facility at NASA

Langley Research Center. A photograph with the model installed in the facility and

accompanying facility schematic are seen in Figure 4.1. The facility is a 6.1 x 7.3 x

9.2m anechoic chamber with the nozzle centerline located at 3.65m above the floor.

Wedges lining the chamber provide an essentially echo-free environment (absorption

coefficient of 0.995) down to about 70 Hz.

The facility was operated as an open-loop, blow-down system with three

pressurized spheres providing the air source. The airflow exhausts to the atmosphere

through the openings in the facility wall and ceiling. This system was capable of

maintaining a uniform flow at M=0.6 for approximately 5 minutes. At lower Mach

numbers, e.g. M=0.3, the run-time can be considerably extended. A maximum

performance up to Mach 2.1 with a 0.038m nozzle is projected. The nozzle used

for these tests was 0.3048m in diameter with a maximum capability of Math 0.9.

The variation of total pressure at various cross-sections parallel to the nozzle face
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was previously measuredusing a traversingmicrophonesystem. The horizontal

variation at 0.508mand 0.762mhavebeenplotted in Figure 4.2. In addition, the

vertical variationat 0.508mfor M=0.6 has also been included. The results show a

very uniform pressure in the jet core. The test plate studied here was approximately

0.584m from the nozzle exit. Even at 0.762m the test plate was well within the jet

core, see Figure 4.2. During all test runs the chamber conditions, i.e., temperature,

humidity and pressure, were monitored.

A photo of the model in-situ is shown in Figure 4.3. The model dimensions are

given in Figure 4.4. To approximate two-dimensional airflow over both sides of the

plate, two horizontal baffles were placed near the plate edges. The airfoils above and

below the baffles were incorporated to make the flow as symmetric as possible. The

plate is placed between nominally identical symmetric fore and aft airlbils, such that

the leading edge of the elastic test plate is attached to the trailing edge of the leading

airfoil, while the trailing edge of the elastic test plate is attached to the leading edge

of the aft airfoil, see Figure 4.5. Pressure taps were symmetrically located in the

airfoils to make sure that the plate is aligned with the flow and thus the plate is not

exposed to lifting forces (i.e. a static pressure differential). The affect of flow on

both sides of the plates doubles the C1 and C2 integrals. This results in approximately

doubling the acoustic radiation damping.

Details of the clamping mechanism for the elastic test plate are shown in Figure

4.6. The plate leading edge is secured between the upper and lower airlbil halves

with the screws going through the plate. This edge was assumed to have classical

pinned conditions. The plate trailing edge is inserted into a slot formed by the leading
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edgeof the upperand lower halvesof the trailing airfoil. This slot was designed

to allow the plate to expand or contract freely, without allowing rotation. Thus the

plate trailing edge was assumed to have classical clamped conditions. The plate was

expected to expand and contract due to temperature changes caused by the airflow.

The plate was instrumented with strain gages and PZT (lead-zirconate-titanate)

patches (piezo-electric devices), as seen in Figures 4.7 and 4.8. Two pairs of strain

gages were symmetrically bonded near the trailing edge of the plate to measure the

y-direction bending strain. Three pairs of PZT patches (0.0254 x 0.0127 x 0.OtX)25m)

were also symmetrically bonded. The PZT patches can be used to either excite the

structure or measure the structural response. In this case the PZTs were intended to

excite the bending motion of the plate by driving the three patches on one side of

the plate out-of-phase from the patches on the second side. The instrumentation was

located near the plate trailing edge to minimize the effect on the flow over the plate

as well as near a theoretical clamped edge where bending moments are high. The

accelerometer was later attached at the plate center.

4.2 A priori estimation of test conditions

Various parameters were estimated a priori to assess the conditions for the

experiment. Among these were the boundary layer thickness, PZT output and

the anticipated strain levels. A summary of these calculations for an aluminum

semi-infinite strip with clamped-pinned edge conditions follows.
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4.2.1 Boundary Layer Thickness

The boundary layer thickness is given by the following empirical formula [2]:

5 0.37

x = _ )ZRex_l/5 (4.1)

where the Reynolds number is:

Re_- poUx , (4.2)
/t

x (=0.508m) is the distance from the leading edge of the fore airfoil to the center of

the flexible plate, and p (=l.8x10 -5 Ns/m 2) is the dynamic viscosity. The fluid density

and flow speed are calculated using the compressibility tables for air and assuming

an ideal gas. At M=0.6, when the static pressure is 14.7 psi and the stagnation

temperature is 50°F, then the fluid density, po, is 1.34kg/m 3 and the flow speed, U, is

195rn/s. These parameters result in Rex=7.37x106, giving a boundary layer thickness,

5, of 0.00794m. The boundary layer thickness to plate chord ratio, Ma, is 0.0794.

Since this ratio is less than 0.1 then the boundary layer affects on acoustic radiation

damping may be neglected. If this ratio had been much greater than 0.1, then the

boundary layer would need to be included in the analysis.

4.2.2 PZT excitation

The PZT excitation may be approximated using the following analysis for a

semi-infinite strip, see ref. [6]. The boundary conditions assumed in ref. [6] have

been modified to accommodate pinned-clamped conditions.

motion, the isotropic semi-infinite equation of motion is:

D d4 W d 2Ms
_-P hw2W= _x 2 ,

Assuming harmonic

(4.3)
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where the moment induced by a PZT pair excited for bending motion is given by:

M z = Cl£pe[U(X - ao) - lt(x - al)]%e/W b. (4.4)

= andThe PZT parameters are: Cl = - "T, %e t

P = _[_ht(h + t)/{2[(h/8)3+ t 3] + _ht2}]. Epe and Eb are the PZT and plate

bending stiffnesses, respectively, h is the plate thickness, t is the PZT thickness, d31

is the PZT charge constant, and V is the input voltage.

Eq. (4.3) is solved for the plate displacement by assuming a single mode

expansion of W as given by Eq. (2.12) and applying Galerkins' method as given

by Eq. (2.15). Substituting the beam function for a clamped-pinned plate (i.e.,

Wn(x) = cosh(flnX)- cos(flnX)- an[sinh(flnx)- sin(fl,,.r)]) into the modal

expansion and solving for the plate modal amplitude, then:

Wpe Fo - F1

IA.I = Clgpe Wb pha(w2 n _w2( 1 + j2(n))' (4.6)

where F0 = fln[sinh(flnao) + sin(flnao) - an(cosh(j3nao) - cos(/_nao) )] and

F1 = fln[sinh(flnal) + sin(_al) - an(cosh(flnal) - cos(13,,al))]. Utilizing the

material properties given in Table 2.1 and the plate and piezo dimensions given in

Figure 4.8, then the magnitude at the first mode is Al=l.75x10 4 using three PZT

pairs. This estimation is based on a maximum PZT input voltage of 80 volts with

a charge constant of d31 =150x10- 12 m/V. The equivalent viscous damping, (I, is

assumed to be 0.01. Since, the plate displacement to thickness ratio, A]/h=0.175, is

less than 1, then the plate is vibrating in the linear range.
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4.2.3 Flow induced vibrations

Although the estimated mean flow boundary layer characteristics should not

significantly affect the acoustic radiation damping, the boundary layer pressure

fluctuations can cause plate vibrations. These vibrations levels were estimated here

to make sure that the PZT patches could drive the plate to response levels at least

an order of magnitude greater than the forced response due to the boundary layer.

The boundary layer pressure fluctuations on the plate were assumed to be fully

correlated in space which results in an overestimation of response. The pressure

spectral density is [17]:

where

2

_2(to) = Prms

too [1 + (w/too)2] 3/2 (4.7)

8U
t,)0 _ m

Pl" Ins

0.006q

1 + O.14M 2'

and

Using the flow conditions calculated in section 4.2.1, then the modal magnitude

for a single mode approximation is given by:

All.

X/cb(to)to,_(nr{'_'2.[(-1)n+'V/--a2nn + 1- V/-_n- 1 + 2c_,,] }

phaw_2(.
(4.8)
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Evaluating Eq. (4.8) for the first mode at its resonance frequency, then

A1 [,_=,_a = 2.44 x 10-6m for (1---0.01. This response is much less than that estimated

due to the PZT excitation (Al=l.75x 10--4m) calculated in section 4.2.2. Thus the

PZTs should drive the plate above the boundary layer 'noise'.

4.3 Ground vibration tests

Extensive no-flow ground vibration tests were done prior to testing the elastic

plate with flow. These test results are summarized in the following sections. Two

plates were tested during the ground vibration test phase.

4.3.1 Test Plate 1

The first test plate provided much information concerning repeatability and modal

frequencies, mode shapes and structural damping values. Tests were conducted with

impact excitation, acoustic excitation as well as with PZT excitation.

A sample transfer function between the impact hammer (PCB No. 086C80)

and an accelerometer (Endevco #2250-A10, 0.4gm) is given in Figure 4.9. The

modal peaks are sharp and distinct. The scatter of modal frequency and damping

values acquired over a 2 month period during which time the plate was removed and

reinstalled in the model many times are plotted in Figure 4.10 along with analytical

clamped-free-pinned-free (CFPF) and pinned-free-pinned-free (CFCF) values [4].

The data were acquired using both impact hammer and sine-dwell acoustic speaker

excitation. The response was measured with 1 or 2 accelerometers attached to the

plate at various locations. The damping was calculated from a bode plot within

the spectrum analyzer (GenRad 2515) or from the transfer function by using the
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half-powertechnique.The resultsshowvery little changein modal frequency,but a

largerscatterin thedampingvaluesfor eachmode. Note that the dampingis equal

to or lessthan0.021for all modes.Also modes2,1 andhigherarecloselyspacedin

frequencyor the modeshapesmoredifficult to identify. For thesereasonsonly the

first threemodeswere consideredin future tests. Sincethe 2nd and 3rd modesare

not includedin thesemi-infinitestrip analysis,thenonly the first modeexperimental

flow resultswill be comparedto analysis.

Unfortunately,this platewasdamagedsuchthat thefundamentalfrequencypeak

wasno longersharpanddistinct. Thus a new testplatewas constructedand used

in the remainingtests.

4.3.2 Test Plate 2

Test Plate 2 was placed in the model and the modal frequencies and damping

values calculated from an impact hammer test with the response measured by an

accelerometer. The results are also plotted in Figure 4.10. Plate 1 and 2 modal

frequencies agree very well. The damping value for the Plate 2 first mode lies well

within the scatter of the Plate 1 data, while the 2nd and 3rd mode damping values

are less than those measured for Plate 1.

Bare (described in the preceding paragraph), instrumented and in-situ case modal

frequencies and damping results are presented in Tables 4.1 and 4.2, respectively.

The instrumented and in-situ results have the PZT patches and strain gages bonded

to the plate. The instrumented results were acquired with the plate installed in the

model, but the model was not in the flow test chamber. The in-situ results were

acquired with the model installed in the flow test chamber. The plate was removed
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from themodel betweenthe bareandinstrumentedcasesto allow for the installation

of the PZT patchesand strain gages. However, the plate remainedin the model

betweenthe instrumentedand in-situ cases.

Theanalyticalnaturalfrequenciesfor plateswith idealCFPFandPFPFboundaries

havebeenincludedwith the bare,instrumentedand in-situ measuredvaluesin Table

4.1. Note that basedon frequenciesalone,the barecaseis closer to CFPFwhile the

instrumentedplate is closerto PFPF.The instrumentedplatefrequenciesarelower in

part due to theaddedPZT masses.The PZTswereestimatedto decreasethe modal

frequencyof the first modeabout10%,while the accelerometermasswould reduce

the fundamentalmodal frequencylessthan2%. This masspartially accountsfor the

decreasesin frequencybetweenthe bare andinstrumentedcases. In addition, the

non-uniformdistributionof themasswill alsoaffect themodal response.Thesemass

changeswould mostaffect the lower modes,particularly the first mode.

Most of the dampingresultspresentedin Table 4.2 (seealso Figure 4.11)

were acquiredusing an impact hammeror sine-dwell acousticspeakertest with

accelerometersor straingagesmeasuringthe response.For thesecases,thedamping

wascalculatedfrom thebodeplot or by thehalf-powertechnique(1-71in Figure4.11).

A log-decrementtechnique[18] usingthe PZT patchesor a speakeras excitation

was usedfor the dampingcalculationsin column4 or o in Figure 4.11 (with the

raw unscaleddata in AppendixB). Thesewerethe only decaymeasurementsto have

a distinct decay. Thesevalues in column4 aresignificantly larger than those in

columns2, 3 and5. A beatingpatternwasevidentin thedecaydata. The last three

values in column 4 were acquiredsimultaneouslyand agreeto within 12%for the
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two straingagesandthe accelerometer.The decay calculation with a speaker input

and accelerometer output was not as clean.

The PZT excited decay responses may be significantly influenced by the PZT

patches. PZT patches act like capacitive devices that may thus continue to affect the

plate vibrations (e.g. additional damping) after the signal to them has been stopped.

The PZT effect on the decay has not been quantified. Although the PZT patches

might affect absolute damping values, the change in damping may still be correct,

depending on the magnitude of this effecL Sine-dwell PZT with strain gage response

results were not calculated due to the interaction between the PZTs and the strain

gages. The strain gages can be affected by the 100 volts supplied to each PZT patch.

This was evident in the sine-dwell PZT test where the strain gages showed essentially

a fiat response near the modal frequencies. In addition, the strain gage should be

several characteristic lengths from the PZT patches to eliminate the effect of the PZT

nearfield on the strain gage response. The in-situ damping values acquired with the

impact hammer agree with the previous impact tests. However the data acquired

using the sine-dwell PZT technique with accelerometer response are significantly

higher as was evident with the decay measurements. The in-situ modal data was

acquired following the flow tests to be described in the next section. In general, the

results from the PZT excitation are not thought to be reliable. In future tests, the PZT

patches and strain gages should be well separated on the test plate.
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4.4 Flow Tests

Following the ground vibration tests outside the flow test chamber, the response

of the plate with flow was measured. The static pressure differential across the

fore and aft airfoils was monitored during the tests with Datametrics (no. 570D)

pressure transducers. The variation with Mach number is plotted in Figure 4.12

with the accelerometer installed. The pressure differentials were also measured at

M=0.6 without the accelerometer installed. These results are denoted as a 'square'

for the fore airfoil and a 'plus' for the aft airfoil. The solid line is the minimum

pressure differential that would cause buckling, and thus changing the plate stiffness

[27]. The fore and aft airfoil pressure differentials lie well below this line. The

pressure differential increases with Mach number up to M=0.7 as expected. The

decrease at M=0.8 has not been explained. The accelerometer lead was blown off

during the M=0.7 run and was gone during the entire M=0.8 run, which may partially

explain this trend. The accelerometer itself remained attached to the plate. Since

Ap is not exactly equal to 0, then the airfoils are not perfectly aligned with the

flow. The difference in Ap between the fore and aft airfoils could be caused by

a misalignment between the two airfoils. In addition, the instrumentation on the

plate, particularly the accelerometer, could cause a static pressure difference. An

accelerometer was bonded to one side of the plate once the strain gage outputs were

questioned. The accelerometer will significantly affect the flow, as is evident in

the strain gage response with and without the accelerometer at M=0.6, see Figure

4.13. However, these accelerometer measurements did provide significant insight

and confidence in the results.
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The pressure, temperature, and humidity in the chamber were monitored during

the test runs. The chamber pressure remained relatively constant (_). 1 psi) over the

three weeks in which flow data was acquired. The chamber temperature decreased

as much as 10°F during the course of a single blow down. If the plate were firmly

fixed (no expansion or contraction allowed) then this change in temperature could

cause the plate to buckle and become stiffer. The additional stiffness would cause

the modal frequencies to increase. However, the fundamental frequency was nearly

constant during a single blow-down which implies that the plate properties were not

changing. The repeatability of the accelerometer data at M=0.6 is shown in Figure

4.14. Between these two data acquisitions the accelerometer had been removed and

reinstalled. The relative humidity decreased from 30% -,_ 40% to nearly 5%. The

effect of relative humidity is thought to be negligible.

The PZT patches were not sufficient to excite the plate greater than that induced

by the flow. This was evident in the sine-dwell PZT tests with the response measured

by an accelerometer. The peak at the PZT driving frequency was not discernible

above the flow 'noise'. This might have been overcome if a much longer data

acquisition time was available so that the random excitation components due to the

flow could be eliminated by appropriate signal processing.

For the data cases presented with flow, the flow alone excited the plate. In

addition, the accelerometer remained attached to the plate center. The flow excitation

pressure field could not be measured with the existing test model. Thus, the fluid

to structure transfer function was assumed to have the same shape as a function

of frequency as the square root of the response power spectral density (PSD). This
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assumesthat the flow excitationis nearly uniform asa function of frequencynear

the modal frequencies.The modal frequencywas the peak of the PSD while the

half-powerpoints requiredfor the half-powertechniquewere locatedat one-halfthe

maximum PSD amplitude.

SamplePSD responsesnear the first modal frequencyfor the straingageand

accelerometerareshown in Figure 4.15. The responseat M=0.4 is small when

compared to the higher Mach numbers. However, a peak exists at the first mode.

Note that although the frequency increases with increasing Mach number, the response

amplitude decreases and broadens for M-0.5 - 0.7. This amplitude trend is expected

since as the Mach number increases, then the damping increases resulting in a

broadening of the peaks. If the excitation is assumed to increase with increasing

Mach number, then the decrease in peak modal response also indicates an increased

damping.

The modal frequency and damping results are shown in Figures 4.16-4.18 for

modes 1,1 and 1,2. Data for both the accelerometer and a strain gage have been

included. As for the analytical results, the frequencies are presented as ratios, with the

frequency at M-0 (240 Hz) as reference. The analytical results for clamped-pinned

and pinned-pinned semi-infinite strips and for a fully clamped plate where a--0.1m,

b--0.15m, and h--0.001m have been included. The clamped plate damping values were

taken from the design chart Figure 3.20, since the flow would have a small effect

on the clamped plate fundamental frequency (see Figure 3.8a). As previously stated,

only the first mode is compared to analysis. The clamped-pinned and pinned-pinned

curves provide a lower frequency bound and upper damping bound while the fully
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clampedprovidesalower dampingbound.As expectedfrom earlieranalyticalresults,

the clamped-pinnedand pinned-pinnedcaseshavenearly the samedampingratio

but thepinned-pinnedfrequencyratio is significantlylower than the clamped-pinned

results. The measuredfirst modefrequencyratiosdo not continueto decreaseas

Machnumberincreasesasexpectedfrom theory. In fact, there is little changewith

Machnumberor a slight increase.However,theresultsatM=0.4 show fair agreement

between the experimental and numerical values.

Looking at the damping ratio and the change in damping ratio relative to the

damping at M=0, in Figures 4.16b and 4.17, respectively, the analytical values are

for acoustic radiation damping only, while the measured values include all damping

components. However, the change in damping ratio as a function of Mach number,

see Figure 4.17, should only result in the acoustic radiation damping for both the

experimental and analytical cases. Note that the analytical acoustic radiation damping

value at M=0 (0.015) lies below the measured value (0.018). The damping values

for M=0.5 and higher lie below the analytical clamped plate values. Two damping

values for the accelerometer at M=0.6 corresponding to the two runs in Figure 4.14

are included. This indicates the repeatability of the damping values is good. In

addition, the damping for the strain gage at M=0.6 when the accelerometer was not

on the plate is indicated by the 'x'. The reason for the disagreement between analysis

and experiment has not been determined.

The second mode modal frequency and damping values are included in Figure

4.18. Since the second mode is not theoretically modeled, no comparison with theory

is available. The occurrence of the second mode is not possible analytically for a
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uniform flow dueto symmetry. In addition,theeffectof thehorizonralbaffleson the

plate responsewasnot modelled. Since, this modeis apparentin the experimental

data, theneither the plate is non-uniformlyclampedin the fixture or elsethe flow

is not uniform acrossthe plate span.

The experimentalresultsshowgoodrepeatabilityfor modal frequencieswith fair

repeatabilityfor modal dampingratios. Part of the scatterin damping valuesmay

bedue to measurementtechniques.In addition,the measureddampingvalueshave

traditionally beenlesspreciseor repeatablethan the frequencies.However, the test

resultswith flow show good repeatability.

The theory and experimentare definitely not in close agreement,especially

for damping. The following paragraphpresentssomepossiblereasonsfor these

differences.

The flow core radiusat the plate is aboutthe sameas the plate chord. Thus a

meanflow discontinuityexistsnearthe plate althoughthe plate itself is well within

the flow core. The flow discontinuitycancausereflectionof acousticwavesback

to the plate. The plate is assumedin the analysisto createflow disturbancesthat

radiateto infinity througha uniform meanflow field. This discontinuityin the flow

could be significantand it might be accountedfor in the analysisby using a fluid

model that varieswith distancefrom theplate. An alternativeapproachto improving

theanalytical/experimentalagreementis to performthe testin a low turbulencewind

tunnel. This would moreaccuratelyreplicatethe analyticalmodel presentedhere.

In addition,bettermodellingor understandingof the effectsof PZT materialwould

improve the experimentaldesign.
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Table4.1 Platemodal frequencies

Mode

1,1

1,2

1,3

1,4

2,1

2,2

CFPF

378(1.00)

440(1.17)

Analytical frequencies(Hz)
PFPF

204(1.00)

267(1.31)

657(1.74) 522(2.56)

Bare

315(1.00)

372(1.18)

562(1.78)

Measured frequencies(Hz)

In-situ

240(1.00)

295(1.23)

475(1.98)

1066(2.82) 849(4.16) --

818(4.03) 930(2.95)

898(4.40) 962(3.45)

Instrumented

246(1.00)

355(1.44)

538(2.18)

923(3.87)1229(3.25)

1304(3.45)
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Table 4.2 No-flow measured damping values

Mode Bare 1

1,1 .0146(.016)

1,2 .0056

1,3 .0047

Instrumented 2 Instrumented 3

.0256 (.0398) .0313-.0397

.0206 (.0272) --

.0158 (.0225) --

Instrumented 4

.058

.0963

.0798 a

.0531 b

.0532 _

.0473 d

In-situ 5

.018 (.085)

--(.0574)

.0248 (--)

Superscript Force method Response type

2

4

a

b

C

d

5

impact hammer bode

(speaker sine-dwell 1/2-power)

impact hammer bode

(impact hammer l/2-power)

speaker sine-dwell 1/2-power

PZT decay

speaker decay

PZT decay

PZT decay

PZT decay

impulse hammer 1/2-power

(PZT sine dwell 1/2-power)

accelerometer

(accelerometer)

accelerometer

accelerometer

strain gage

accelerometer

accelerometer

strain gage

strain gage

accelerometer

accelerometer

accelerometer
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Figure 4.3. Photograph of mudel in-situ.
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CHAPTER 5 CONCLUDING REMARKS

The primary objective of the dissertation was to evaluate systematically the

acoustic radiation damping for comparison with typical values of structure damping.

Analyses and numerical techniques to predict the acoustic radiation damping for

isotropic and laminated composite finite plates and semi-infinite strips have been

presented. The predictions are based on the classical linear differential equation for a

flat plate or semi-infinite strip. The perturbation pressure derived from the linearized

Bernoulli and continuity equations characterizes the fluid loading. Parameters

varied in the analyses include Mach number, structural mode number, plate or strip

dimensions, edge conditions, material properties and ply lay-up. In addition, the

results were compared to various limiting cases and previously published results.

The perturbation approximation for small fluid to plate mass ratio gives an

initial estimate of acoustic radiation damping with a minimum of computation. The

perturbation method was based on a multimode approach; however, the resulting

expression requires only a single mode computation. The approximation does not

account for changes in the effective mass or stiffness. Thus when the flow significantly

affects the modal frequency, the perturbation approximation results are not valid. In

addition, the perturbation approximation results in large errors near plate divergence

where there is a substantial loss of plate stiffness due to aeroelastic effects from the

interaction of the elastic plate with the aerodynamic flow.

An alternative method for computing the change in modal frequency and acoustic

damping due to the flow is to use the resonant response and half-power method.
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Howevercaremust beusedhereaswell, for example,in computingthefluid loading

term. In fact, for largedampingvaluestheeffectivedamping(C_) andeffectivemass

or stiffness(C2) termsmust be calculatedat eachfrequencyin order to calculate

accuratelytheresonantpeaksratherthanusinga simple linear relationshipbetween

the two half-powerpoints.

The semi-infinitestrip resultsshowedthat the chord length andplate thickness

(andthusfrequency)aswell asMachnumbersignificantlyaffecttheacousticradiation

damping. The platemassaffectsthe acousticradiationdampingratio, but has little

effect on changingthe modalfrequencyfrom thein-vacuuovaluesincechangingthe

plate massdoesnot changetheplatestiffness.Changing the plate boundary condition

can significantly affect the modal frequency, but has little effect on acoustic radiation

damping up to the divergence Mach number of the least stiff plate. Generally, the

higher modes have acoustic radiation damping ratios an order of magnitude less

than the first mode. In addition, the fluid flow has much less effect on the modal

frequencies of the higher modes. The first mode for clamped-clamped plates was

found to be well approximated by a single product of beam functions.

Changing the aspect ratio can have a significant effect on the damping ratio. For

the first mode, the effect of increasing Mach number increases the acoustic radiation

damping up to where the curves collapse at high a/b to piston theory.

The acoustic radiation damping and modal frequencies for symmetrically

laminated composite plates were found to depend strongly on ply lay-up, particularly

the outside fiber direction. This dependence implies that the ply lay-up can be tailored

to maximize the acoustic radiation damping while delaying or preventing divergence.
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Additionally, the composite material acoustic radiation damping ratio is significantly

greater than an 'equivalent' aluminum plate. This is true whether the equivalence

is in terms of plate thickness or stiffness.

A set of universal curves was developed where the damping ratio normalized by

the mass ratio was given as a linear function of a reduced frequency factor. These

curves were valid for a constant aspect ratio and a Mach number. However, the plate

material properties, area, and thickness could vary along each curve. If the plate was

not near divergence, then the reduced frequency factor could be further approximated

such that the effect of the fluid on the plate stiffness (an integral evaluation) was

not required. Since most aircraft sidewall panels are not designed to operate near

divergence, the simpler approximation may be useful in predicting acoustic radiation

damping in aerospace applications.

Finally, the acoustic radiation damping may be equal to or greater than the

assumed structural damping over a range of realistic panel sizes. Thus, for higher

subsonic Mach numbers the acoustic radiation damping of the first mode can be the

dominant damping source.

An experiment was designed and experimental modal frequency and damping

values measured for comparison with the theory. PZT patches (piezo electric

devices) were installed on the plate along with strain gages and an accelerometer.

Unfortunately, the PZT patches interacted electrically and/or mechanically with the

strain gage signals. In addition, the PZT patches were unable to drive the plate above

the vibrations induced by the flow. For these reasons, the flow alone was used to

excite the plate in the present experiments. The plate response was measured by
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strain gages and accelerometers with the modal frequencies and damping calculated

from the measured power spectral density. The repeatability of the flow data was

good. The agreement between measured and theoretical values was at best fair with

an erratic (compared with theory) experimental trend with higher Mach number.

Two general approaches are suggested to improve the experimental-theoretical

correlation. Analytically, a more complex flow may be modeled which includes

the variation in the mean flow speed due to the finite core radius. Experimentally,

performing the test in a low turbulence wind tunnel would more accurately replicate

the analysis presented here. Finally, a better understanding of the effect of PZT

material on the plate response would allow better placement of the instrumentation.
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Appendix A BEAM FUNCTION
APPROXIMATION

The beam functions were approximated using the following analysis to simplify

the integral evaluations in Eqs. (2.17) and (2.17s). For a clamped-clamped beam the

exact expressions for the normalized beam function (for 0 < x < l) is given by

cos¢_ - cosh¢_
w_(_)= _: =

As r _ oo then/_r _ 2

(sinhflrX - sinflrX) + cosh/3_x - cos/_:c. (A1)

Thus Eq. (A1) can be approximated by [10]

Wr(x) -- sinflrX--COSflrX --(--1)re Bdx-1) + C-/¢'_. (A2)

For the clamped-clamped beam the approximation, is very close to the exact function,

even for the first few modes, see Figure A1. The approximation eliminates the

computation errors at the higher modes caused by inaccurate calculation of the

hyperbolic functions.
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Figure A1. Comparison of exact (--) and approximate (12]) mode shapes
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Appendix B EXPERIMENTAL DECAY PLOTS

The following figures contain the raw decay data which was presented in Table

4.2 and Figure 4.11.
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Figure B1. Accelerometer response for PZT excitation at the 1,1 mode.
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Figure B2. Accelerometer response for acoustic speaker excitation at the 1,2 mode.
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Figure B3. Accelerometer response for PZT excitation at the 1,2 mode.
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Figure B4. Accelerometer response for acoustic speaker excitation at the 1,3 mode.
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Figure B5. Strain gage response for PZT excitation at the 1,3 mode.
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Figure B6. Strain gage response for PZT excitation at the 1,3 mode.
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Figure B7. Accelerometer response for PZT excitation at the 1,3 mode.
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